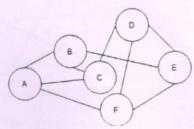
P P SAVANI UNIVERSITY

Third Semester of Diploma Examination November 2022

IDSH2010 Discrete Mathematics

19.11.2022, Saturday

Time: 10:00 a.m. To 12:30 p.m.


Maximum Marks: 60

Instructions:

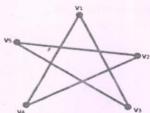
- 1. The question paper comprises of two sections.
- 2. Section I and II must be attempted in separate answer sheets.
- 3. Make suitable assumptions and draw neat figures wherever required.
- 4. Use of scientific calculator is allowed.

SECTION - I

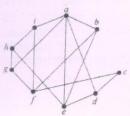
		SECTION - I			
Q-1 (i)	MCQ. (Any Five) Let $f: R \to R$ be defined by $f(x) = \sin x$	x and $g: R \to R$ be defined by	[05]	co co1	BTL 3
	$g(x) = x^2$. Find $f \circ g(x)$.				
(ii)	a) $x^2 \sin x$ c) $\sin x^2$ A relation R in a set A is called, if $(a_1, a_2) \in R \forall a_1, a_2 \in A$.	b) $\sin^2 x$ d) $x \sin x$ $f(a_1, a_2) \in R$ implies		C01	1
(iii)	a) Symmetric c) Equivalence The members of the set $S = \{x: x \text{ is the } 100\}$ is	 b) Transitive d) Non-Symmetric ne square of natural number and x < 		CO1	6
	a) $S = \{1,4,9,16,20,36,49,64,81\}$	b) $S = \{1,4,9,16,25,36,49,64,81\}$			
	c) $S = \{0,1,4,9,16,20,36,49,64,81\}$	d) $S = \{0,1,4,9,16,25,36,49,64,81\}$			
(iv)	A graph is a collection of a) Row and columns c) Equations	b) Vertices and edgesd) None of these		CO2	1
(v)	What is Null Graph?a) A null graph has no nodesb) A null graph has no edges			CO2	1

a) True

(vi)


c) A null graph has no odd vertexd) A null graph has no even vertex

The given graph is regular.


b) False

CO2

(vii)	A graph with finite number of edges and vertices is called finite graph.		CO2	1
Q-2 (a) Q-2 (b)	a) True b) False Use Venn diagrams to verify Commutative laws with Suitable example. Show that if $f: R - {7 \brace 5} \to R - {3 \brack 5}$ is defined by $f(x) = \frac{3x+4}{5x-7}$ and	[05] [05]	CO1	2 3
	$g: R - \left\{\frac{3}{5}\right\} \to R - \left\{\frac{7}{5}\right\}$ is defined by $g(x) = \frac{7x+4}{5x-3}$, then $f \circ g = I_A$ and $g \circ f = I_B$, where, $A = R - \left\{\frac{3}{5}\right\}$, $B = R - \left\{\frac{7}{5}\right\}$; $I_A(x) = x$, $I_B(x) = x$, $\forall x \in B$ are called identity function A and B respectively.			
	OR			
Q-2 (a)	The relation R on $A = \{1,2,3,4,5\}$ is defined by the rule of $(a,b) \in R$, if $a+b=4$.	[05]	CO1	3
Q-2 (b)	 a) List the element of R and R⁻¹. b) Find the domain and range of R. c) Find the domain and range of R⁻¹. Let II = {1,2,3,4,5,6,7,8,9,10}, A = {2,4,6,9,10}, B = {2,4,6,9,		1	
£ = (0)	Let $U = \{1,2,3,4,5,6,7,8,9,10\}$, $A = \{2,4,6,8,10\}$, $B = \{3,6,8\}$ &	[05]	C01	5
	$C = \{1,2,3,8,9,10\}$. Perform the indicated operations.			
Q-3 (a)	 a) A∩B b) A∪B c) A'∩C Find the number of vertices, the number of edges, and the degree of each 	[05]	C02	4
	vertex in the undirected graph. Which vertex is isolated and pendant vertices?	[00]		*
Q-3 (b)	Define simple graph, multi graph and pseudo graph with an example.	[05]	CO2	1
	OR			
Q-3 (a)	Check the graph is isomorphic or not:	[05]	CO2	4
e	us Vs Vs			

Page 3 of 4

Q-4 (i)	Answer the following question. (Any one) Draw a diagram for each of the following graphs $G(V, E)$. a) $V = \{A, B, C, D, E, F, G, H, I\} \&$	[05]	CO2	6
	$E = \{(A,B), (A,C), (B,C), (D,E), (F,A), (F,H), (G,H), (E,I)\}$ b) $V = \{a,1,b,2,c,3,d,4\} \&$ $E = \{(1,1), (a,a), (a,b), (b,a), (1,c), (a,c), (3,4), (c,3), (b,d)\}$		1	
(ii)	Find the set A and B, if		C01	3
	a) $A - B = \{1, 3, 7, 11\}, B - A = \{2, 6, 8\} \& A \cap B = \{4, 9\}$ b) $A - B = \{1, 2, 4\}, B - A = \{7, 8\} \& A \cup B = \{1, 2, 4, 5, 7, 8, 9\}$,		
	SECTION - II			
Q-1	MCQ. (Any Five)	[05]		
(i)	The node which has at least one child is called an internal node.	[oo]	CO2	1/2
(;;)	a) True b) False		002	1/2
(ii)	A group has the properties of		CO4	2
	a) Closure, Associative			
•	b) Closure, Associative, Commutative			
	c) Closure, Associative, Identity d) Closure, Associative, Identity, Inverse			
(iii)	A abelian group has the properties of			
	a) Closure, Associative		CO4	2
	b) Closure, Associative, Identity, Inverse, Commutative			
	c) Closure, Associative, Identity			
	d) Closure, Associative, Identity, Inverse			
(iv)	A relation $(34 \times 78) \times 57 = 34 \times (78 \times 57)$ can have property.			
	a) Inverse b) Associative		CO4	4
	c) Commutative d) Closure			
(v)	A compound proposition that is neither a tautology nor a contradiction is called		CO2	
	a		CO3	1
	a) Contingency b) Equivalence			
(-1)	c) Condition d) Inference			
(vi)	$A \land \neg (A \lor (A \land T))$ is always		CO3	4
(1111)	a) True b) False		003	-
(vii)	$(A \vee F) \vee (A \vee T)$ is always		CO3	4
Q-2 (a)	a) True b) False			
~ ~ (a)	Find using truth table, whether of the following implication is tautology.	[05]	CO3	4
Q-2 (b)	$(p \to q) \land (q \to r) \Rightarrow p \to r$ Write the associative law and prove that we have			
(-)	Write the associative law and prove that using truth table.	[05]	CO3	3

Q-2 (a)	Prove the following equivalences by using the truth tables.	[05]	CO3	5
	$(p \to q) \land (p \to r) \Rightarrow p \to (q \land r)$			
Q-2 (b)	Find the using truth table.	[05]	CO3	4
	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$			
Q-3 (a)	Define the following terms with two examples of each:	[05]	CO2	1/6
	a) Tree			
	b) Root			
	c) Branches			
Q-3 (b)	Define leaf node, Internal node and Degree with suitable example.	[05]	CO2	1/6
	OR			
Q-3 (a)	The binary operation $*: Q \times Q \to Q$ defined by $a*b = a+b+ab$, $\forall a,b \in Q$ is	[05]	CO4	3
	commutative and associative.			
Q-3 (b)	Consider the Q of rational numbers, and let \ast be the operation on Q defined by	[05]	C04	5
	a*b=a+b.		1	
	a) 1*4			
	b) 9 * 8			
	c) $(-1)*\frac{7}{2}$			
	2	FOWT		
Q-4	Answer the following question. (Any one)	[05]		
(i)	Prove the following equivalences by using the truth tables.		CO3	4
	$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$			
(ii)	Prove that set if all positive integers are not a group under addition. ********		CO4	2

CO : Course Outcome Number

BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create